- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0003000001000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Jacks, Adam (4)
-
Lobaton, Edgar (4)
-
Haley, Katarina L (3)
-
Soleimani, Reza (3)
-
Guo, Shengjie (2)
-
Bozkurt, Alper (1)
-
Brewer, Alec (1)
-
Dieffenderfer, James (1)
-
Eichenlaub, Emily (1)
-
Franz, Jason R. (1)
-
Ghosh, Sujit K. (1)
-
Haley, Katarina L. (1)
-
Hess, Thomas M. (1)
-
Khatri, Geet (1)
-
Misra, Veena (1)
-
Neupert, Shevaun D. (1)
-
Noonan, Maxwell A. (1)
-
Smith, Madeline (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Dementia is primarily caused by neurodegenerative diseases like Alzheimer’s disease (AD). It affects millions worldwide, making detection and monitoring crucial. This study focuses on the detection of dementia from speech transcripts of controls and dementia groups. We propose encoding in-text pauses and filler words (e.g., “uh” and “um”) in text-based language models and thoroughly evaluating their impact on performance (e.g., accuracy). Additionally, we suggest using contrastive learning to improve performance in a multi-task framework. Our results demonstrate the effectiveness of our approaches in enhancing the model’s performance, achieving 87% accuracy and an 86% f1-score. Compared to the state of the art, our approach has similar performance despite having significantly fewer parameters. This highlights the importance of pause and filler word encoding on the detection of dementia.more » « less
-
Khatri, Geet; Soleimani, Reza; Haley, Katarina L; Jacks, Adam; Lobaton, Edgar (, IEEE)
-
Soleimani, Reza; Guo, Shengjie; Haley, Katarina L; Jacks, Adam; Lobaton, Edgar (, IEEE)
-
Dieffenderfer, James; Brewer, Alec; Noonan, Maxwell A.; Smith, Madeline; Eichenlaub, Emily; Haley, Katarina L.; Jacks, Adam; Lobaton, Edgar; Neupert, Shevaun D.; Hess, Thomas M.; et al (, Annual International Conference of the IEEE Engineering in Medicine and Biology Society)
An official website of the United States government
